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Abstract — The prior knowledge that the radar return 

signal is a superposition of near-ideal plane-waves is used 
to suppress clutter and calibrate the array. A previous [1] 
radar version of the CLEAN [2] algorithm is modified to 
perform a parameter fit that analyzes signal data into 
(nonorthogonal) plane-wave modes. Signal data models 
now require fewer (less-fragmented) plane-wave clutter 
and target modes. Each range gate is processed 
independently and no sample covariance matrices are 
necessary. 

 
INTRODUCTION 

 
Early radar systems relied on geometries that 

purposely avoided the illumination of clutter or reception 
of interference. Target (airplane or ship) return signals 
were detected in relatively stationary and uncolored 
receiver noise. More ambitious radar systems must handle 
clutter and interference signals which are nonstationary 
and colored in some combination of range, time, space, 
Doppler, and angle. Whitening filters, Constant-False-
Alarm-Rate (CFAR) processing, and nonstationary 
heuristic tricks are traditionally employed to effectively 
flatten the clutter and interference into stationary white 
noise. 

Airborne Ground-Moving-Target-Indicator (GMTI) 
radar systems [3,4] must find targets moving on an 
enormous background of clutter which is also moving at a 
wide range of velocities relative to the receive array.  This 
is analogous to finding needles ambling through an 
exploding haystack. This difficult job requires a 
significant space-time aperture to separate the moving 
targets from the clutter. The combination of a significant 
space-time aperture and ordinary terrain produces a 
highly energetic, highly nonstationary, and highly colored 
clutter return signal. Clutter discretes over 50 dB stronger 
than the targets are not unusual. 

Traditional Space-Time-Adaptive-Processing (STAP) 
[3,4] often relies on heuristic techniques to obtain a good 
estimate of the covariance matrix associated with each 
beam-Doppler target cell. Performance depends on how 
accurately the covariance matrix represents the local 
clutter and, to some extent, on how well the steering 
vectors match the radar system. Larger space-time 
apertures theoretically allow better performance because 
larger covariance matrices have more degrees of freedom 

to cancel clutter. Unfortunately, larger apertures resolve 
lumpier clutter so that sample support homogeneity 
suffers. Reduced rank techniques ideally allow reduced 
sample support. Unfortunately, real-world, large-aperture, 
sample covariance matrices are often of significantly high 
rank. Because the clutter power is so much stronger than 
the target power, small timing or pointing perturbations of 
the scattering and measurement processes smear and 
modulate significant power from large eigenmodes into 
smaller eigenmodes. 

It appears that traditional STAP is pushed beyond the 
limit when large space-time apertures observe targets 
buried in extremely strong clutter and interference. But 
airborne GMTI radar systems are trending towards larger 
space-time apertures to handle target-rich, highly 
inhomogeneous urban and mountainous environments. 
One can extend the use of STAP by obtaining more 
accurate covariance matrices based on other 
measurements and prior information. However, as space-
time apertures increase, it becomes much more difficult to 
patch covariance matrix estimates. 

The basic problem is that large-aperture space-time 
data sets have too much structure and contain too much 
information to permit accurate covariance matrix 
estimation. But highly-structured, information-rich data 
should present an opportunity, not an obstacle. Maybe 
there is a better way to extract information from the data. 

Note that any multidimensional Kalman [5] filtering 
problem could also be solved (poorly) using STAP-like 
techniques. Both approaches estimate a state covariance 
matrix and use the equivalent of a steering vector to 
provide a state estimate from measurements. The Kalman 
filter has the advantage that known state biases (evolution 
matrix), measurement biases (measurement matrix), 
correlated process perturbations, and correlated 
measurement uncertainties are “removed” from the state 
covariance matrix. Iterative Kalman filters easily handle 
known nonstationary system and measurement structure.  

Although the Kalman filter may not directly apply to 
the airborne GMTI radar problem, the overall Kalman 
philosophy does. In this era of higher-resolution space-
time radar measurements, the known structure of the 
measurements should be exploited, starting with a 
physical model of the scattering process. 

 
  



PLANE-WAVE MODEL OF GMTI RADAR DATA 
 
 Within a given range gate, an airborne GMTI radar 

typically observes a long, thin, curved strip of the earth’s 
surface. Because the propagation and scattering processes 
obey (very nearly) linear equations, the return signal can 
be modeled as a linear combination of Huygens 
wavefronts emanating from clutter and target “point” 
scatterers along the observed strip. If the radar signal 
wavelength is λ, the “points” can be thought of as blobs 
of λ/2 extent, with little loss of accuracy. Because the 
antenna array length, D, is very much smaller than the 
distance, R, from the illuminated strips, scatterers are 
smeared into resolution cells of extent R·λ/(2·D). In the 
neighborhood of the antenna array, the reflected signal 
from a resolution cell is (very nearly) in the form of a 
plane wave. 

Over the coherent processing interval (CPI), M 
complex time samples are collected for each of N spatial 
channels. Suppose the space and time samples are, at least 
approximately, uniformly spaced ∆x and ∆t apart 
respectively. The measured signal at the (n,m)th space-
time sample can be modeled as 
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where Ap is the complex amplitude of the pth structured 
(target or clutter) signal component, κp is the spatial 
frequency associated with a plane wavefront arriving at a 
beam angle, θp, relative to broadside, ωp is the temporal 
frequency associated with a Doppler frequency, fp, and 
vn,m is the measurement noise. Jammers can be included 
in this model. A point jammer is modeled with M or 
fewer strong “Doppler” frequencies from a single beam 
direction. Powerful ground-illuminating jammers can 
occupy more than one beam direction. 

The redefined problem is to separately estimate the 
target and clutter sinusoids of (1), not to cancel clutter. 
For the purpose of a catchy acronym, this unconventional 
approach might be called Signal and Clutter as Highly 
Independent Structured Modes (SCHISM [1]). The 
method is founded on the prior information that the 
typical airborne GMTI radar return signal is derived from 
a superposition of near-ideal EM plane waves. Many of 
these plane waves possess a very high signal-to-random-
noise ratio (S/N). Fortunately, it is possible precisely 
estimate the frequency and amplitude [6] of the 
troublesome strong clutter signals. 

The coherent analysis of the radar return signal into 
precise clutter and signal modes provides many potential 
benefits.  Fine beam-Doppler resolution yields accurate 
target positions. A precise, coherent clutter model 
provides a very sharp, selective interference+jammer 
filter through simple subtraction. An accurate estimate of 
the ideal clutter-only return signal can be synthesized for 

calibration on clutter. Non-moving scatterers are not 
filtered out so that the radar operates simultaneously in 
Moving-Target-Indicator (MTI) and Synthetic-Aperture-
Radar (SAR) modes. Although a single CPI spans a rather 
puny synthetic aperture, multiple CPIs can be merged by 
use of the clutter estimate as a reference for motion-
compensation and other biases. A precise estimate of the 
clutter modes can provide control points for registering 
targets to ground coordinates or for navigation. Amplitude 
and frequency parameters are independently estimated for 
each range gate so that covariance matrices are avoided 
(perhaps entirely). Finally, initial experiments indicate 
that the processing load will be lightened relative to 
Minimum-Variance-Distortionless-Response (MVDR) 
STAP or multi-beam SAR algorithms. 

The catch is that fitting the model of (1) to the data 
requires nonlinear operations for frequency estimation 
and the solutions are not unique. The simple example 
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with the solution 
( ) ( )( ) ( ) ( )ωω ⋅−⋅≡= j1sa1s2s exp,angle          (4) 

demonstrates that the amplitude and frequency of an 
isolated noiseless sinusoid can exactly estimated from two 
(Nyquist) samples. When the frequency is known, the 
amplitude can be found using a linear estimator. Whether 
or not the amplitude is known, the frequency requires a 
nonlinear estimator. Naturally, it is possible to fit many 
functions through two data points. Fig. 1 plots a single red 
frequency and a linear combination of 32 blue frequencies 
that both precisely fit two samples of the sinusoid, 
2·exp(j·4·t). Without additional information, it is 

impossible to choose between the two solutions. The 
radar might be illuminating a single metal fence post, or a 
linear array of 32 fence posts. The two-sample array 
cannot resolve individual posts.  

 
CHOOSING A PLANE-WAVE ANALYSIS ALGORITHM 

 
Because there is no unique solution for (1), there is 

also no unique algorithm to estimate (A,κκκκ,ωωωω) from space-
time data. A (linear) fast Fourier transform (FFT) can be 
used to transform the space-time data into the beam-
Doppler domain. The FFT precisely fits the data to an 
arbitrarily chosen uniform 2D grid of beam-Doppler 
frequencies. The result is a solution where power is 
spread over broad main beams and leaked into sidelobes 
(see the blue portion of Fig. 1). The FFT is definitely not 
a good candidate analysis algorithm.  
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 Fig. 1. Different models precisely fit two data samples. 



A more compact set of beam-Doppler modes can be 
estimated using many quite different nonlinear 
techniques. The choice of an algorithm depends on the 
desired properties of the solution. The airborne GMTI 
plane-wave analysis algorithm should keep the number of 
scatterers near Brennan’s rule [2,3]. It is easier to describe 
a diffuse scatterer as combination of point (resolution 
cell) scatterers than vice versa. Algorithms based on mode 
orthogonality do not match the model of (1) because the 
actual scatterer frequencies are not likely to be orthogonal 
over the sample support. Post-Doppler or post-beam 
algorithms should be avoided because true 2D algorithms 
exhibit better S/N and plane-wave mode isolation. 
However, an efficient FFT preprocessing of the space-
time data to the 2D beam-Doppler mode domain can be 
used to localize mode power. Data tapering can reduce 
mode cross coupling. Performance metrics should be 
Minimum-Doppler-Velocity (MDV), and detection and 
false alarm probabilities. If the radar system reliably finds 
targets, it doesn’t matter how well (1) fits the data. 

After some experimentation, it was found that 
algorithms based on quadratic metrics tend to evenly 
distribute power among modes. For example, the blue 
curve of Fig. 1 can be thought of as a Least-Squared-Error 
(LSE) fit of the data to 32 frequency modes. Even if 
frequencies are poorly chosen, an LSE algorithm will try 
to find a way to spread out the power. A nonquadratic 
metric encouraged the concentration of power into 
compact modes, but also exhibited a capture zone limit 
and greatly reduced processing efficiency. An alternating 
projection [7] attempt required too much iteration to 
sharpen the modes. The Prony algorithm [8] was designed 
for deterministic “superresolution”. However, frequency 
estimation algorithms based on autoregressive signal 
models or noise subspaces [9] do not constrain the modes 
to lie on the unit torus (2D version of unit circle). Also, 
Prony-style algorithms have issues with process order 
estimation and the complexity of 2D autoregressive 

models [10] (not Toeplitz). A previous [1] airborne GMTI 
radar version of the CLEAN [2] algorithm did a good job 
concentrating power into compact regions of beam-
Doppler space. Unfortunately, the number of required 
modes was at least an order of magnitude higher than 
predicted by Brennan’s rule. Algorithmic modifications to 
reduce the number of modes proved successful, as shown 
later. 

 
GMTI RADAR VERSION OF THE CLEAN ALGORITHM  

 
The CLEAN algorithm [2] is often used in radio 

astronomy imaging to detect small radio sources obscured 
by nearby large sources. If the impulse response, point-
spread function, Green’s function, etc. is known for a 
measurement process, it is possible to precisely subtract 
out the effect of a large point interference source, which 
can obscure small sources. Usually, extended interfering 
sources can be approximated by a group of point sources. 

The coherent beam-Doppler point spread function of 
an airborne GMTI radar system can be accurately 
estimated because the incident radiation is in the form of 
near-ideal plane waves. The CLEAN-like algorithm first 
finds the 2D frequency and amplitude of the largest peak 
of the beam-Doppler FFT of the data and then subtracts 
out a portion of the mode. The process is repeated until 
the power drops below a desired threshold.  

Fig. 2 shows the operation of the CLEAN algorithm 
for an isolated, unresolved pair of 1D modes. The red and 
blue dashed vertical lines mark the amplitude and 
frequency of the two unresolved modes that sum to the 
black curve. The upper right graph shows the solid blue 
error residue after the first four green CLEAN modes are 
subtracted. The lower left graph shows the typical error 
residue lobes symmetrically distributed about the first 
mode. The lower right graphs shows that 16 green modes 
beat the solid blue error residue down to –50 dB. The 
CLEAN process represents the black sum signal as 16 
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Fig. 2. Operation of the CLEAN algorithm for an isolated, unresolved pair of 1D modes. 



modes arranged in three clumps. A gain of 0.5 was used, 
which means that only half of the peak error amplitude 
was subtracted at each iteration. If the entire amplitude 
were subtracted (unity gain), the symmetric error lobes 
would be much more powerful. For GMTI radar, the error 
lobes degrade the MDV and can produce false alarms. 

A heavy data taper can be used to suppress sidelobes 
so that amplitude estimates are not corrupted by mode 
cross-talk and parallel peak identification techniques do 
not accidentally identify a sidelobe as a mainlobe. 

The left side of Fig. 3 plots the error lobes associated 
with frequency estimation error for an isolated mode. The 
top graph plots power (dB) with respect to the peak mode 
power, and the bottom graph shows the antisymmetric 
amplitude response. A fraction of 1/16 in the legend 
means that the estimated frequency was in error by 1/16 
of the horizontal plot extent. Accuracy to 1/4096 of the 
bandwidth is necessary to beat the error lobes down to –
50 dB. The bad news is that the model fidelity is 
extremely sensitive to frequency estimation error. The 
good news is that this sensitivity should permit very fine 
beamsplitting.  

The right side of Fig. 3 plots the error lobes associated 
with modeling two unresolved modes as a single mode. 
The top graph plots power (dB) with respect to the peak 
mode power, and the bottom graph shows the symmetric 
amplitude response. The top curve forms a triplet because 
the pair separation is wide enough to resolve the two 
peaks (sum sags in the middle of the plot). A fraction of 
1/16 in the legend means that the unresolved mode 
frequencies are separated by 1/16 of the horizontal plot 
extent. Accuracy to 1/64 of the bandwidth is necessary to 
beat the error lobes down to –50 dB. The insensitivity to 
this type of error is explained by the top left graph of Fig. 
2. The sum of two unresolved peaks looks very much like 
a single peak. 

Figure 4 shows the range-averaged beam-Doppler 
power for the raw KASSPER Challenge Datacube [11]. 
The datacube consists of 32 time samples for each of 11 
spatial channels for each of 1000 range gates. The plot is 
generated using a 2D FFT to transform zero-filled space-
time data to beam-Doppler space, calculating the beam-

Doppler power for each range gate, and then averaging 
power over the 1000 range gates. The lowest average 
beam-Doppler bin is used to set the noise floor. The 
clutter ridge is rotated 90° from the usual convention, 
because the array elements happened to be arranged 
“backwards” in the datacube. Again, the plot displays the 
raw datacube, ignoring calibrated steering vectors. A 50 
dB Taylor taper was used to suppress sidelobes. Note that 
measurement biases (array calibration errors) smear some 
of the clutter power off the ridge.  

 Fig. 5 displays the range-averaged beam-Doppler 
CLEAN mode power for the Challenge Datacube. A gain 
of 0.2 and a 50 dB Taylor taper were used to model 
modes greater than 13 dB above the noise floor. An 
unoptimized algorithm required 778 ms (Athalon 
XP1900) per range gate using an average of 321 modes. 
Each range gate consists of 352 space-time samples, and 
the beam-Doppler display shows that the power is 
concentrated in a small subset of modes. The average 321 
modes per gate is an order of magnitude greater than 
desired. Note that measurement biases leak power into 
beam sidelobes near Doppler bin 300. 
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Fig. 4. Range-averaged beam-Doppler power for the raw 
KASSPER Challenge Datacube [11]. 
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Fig. 3. Error sensitivity of mode subtraction (frequency error on left, unresolved pair error on right). 



The scale of Fig. 4 reaches 55 dB while the scale of 
Fig. 5 only reaches 43 dB. The FFT modes of Fig. 4 are 
orthogonal, while the CLEAN modes are not. Fig. 6 
clumps the modes of Fig. 5 into a 16x32 grid that is near 
the 11x32 degrees of freedom per range gate, restoring the 
maximum scale to near 55 dB. The mode plots are not a 
substitute for a power spectrum.  

Fig. 7 displays the range-averaged estimation error 
beam-Doppler power for the raw KASSPER challenge 
datacube. The mode analysis was stopped at 13 dB above 
the noise floor, leaving a residual clutter ridge clearly 
visible. More modes could be subtracted to provide a 
more precise model.  

The CLEAN mode analysis does a good job of finding 
the approximate frequencies of the beam-Doppler clutter 
ridge, revealing structure obscured by the FFT mainlobes 
and sidelobes of Fig. 4. The modes fit the data precisely 
to within 13 dB above the noise floor, but do not 
necessarily correspond with superresolved scatterer 
positions. The CLEAN analysis exposes the array 
calibration error lobes in Fig. 5.  

 
CALIBRATION ON CLUTTER 

 
Airborne GMTI radar signals are so dominated by 

ground clutter that expensive space-time measurements 
are required to reveal moving targets. Mediocre airborne 
radar antenna arrays cost a fortune. The cost rises 
dramatically when sidelobe suppression requirements 
exceed 30 dB. Fortunately, the clutter return provides a 
very strong, steady, highly-structured calibration signal. 
The ability to use ground clutter for constant array 
calibration can dramatically reduce system costs and 
operational constraints. The SCHISM approach was 
originally developed for calibration on clutter. 

The modes obtained from coherent SCHISM analysis 
are tailor-made for calibration on clutter. The beam-
Doppler ridge for the Challenge Datacube should lie 
along a single, nearly straight line. Fig. 5 shows error 
lobes on either side of the clutter ridge, which could mask 
or be mistaken for moving targets. A perfectly calibrated 
system would not exhibit the error lobes of Fig. 5. 
Because almost all of the average radar return power is 
ground clutter, an ideal sampled signal can be 
approximated by transforming only the clutter ridge 
modes of Fig. 5 back into space-time data. The array can 
be calibrated by comparing the ideal sampled signal to the 
actual sample system. 

The calibration procedure can be used to find steering 
vectors. Each direction must separately calibrated. 
Alternatively, the datacube can be focused, so that the 
sample gain is uniform and the samples are uniformly 
spaced in space-time. Then, the steering vectors 
correspond to (weighted or unweighted) FFT modes. 
Datacube focusing is convenient for research purposes.  

The procedure begins by fitting the dominant average 
clutter ridge to a quadratic. The clutter ridge is slightly 
curved because of the crab angle. Then, an ideal clutter 
model is obtained by throwing out modes not near the 
main clutter ridge. The rejected modes contain negligible 
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power. The datacube and clutter model are transformed to 
the range-Doppler domain. The Doppler phase of the 
ideal signal is compared the to the actual signal for all 
spatial elements.  The average linear drift and offset of the 
datacube phase is adjusted to match the ideal signal. The 
datacube is transformed back to space-time, yielding a 
datacube with equal element spacing and calibrated 
channel phase. The channel amplitudes are scaled to 
equalize the average datacube channel power. A similar  
procedure can equalize time samples (not often  
necessary). More CPIs and adaptive processing might 
allow higher-order corrections, such as element pattern 
calibration or longer-term drift. 

Fig. 8 shows the range-averaged beam-Doppler power 
for the focused KASSPER Challenge Datacube. The 
clutter ridge is less smeared compared to Fig. 4. 

Fig. 9 shows the range-averaged beam-Doppler CLEAN 
mode power for the focused Challenge Datacube. The 
Fig. 5 measurement bias sidelobes are suppressed. The 
leakage from the clutter ridge is exaggerated by the 1000 
range gate average. The target dots occupy one or two 
range gates, while clutter leakage occupies many gates. 

Fig. 10 displays the range-averaged beam-Doppler 
CLEAN coherent mode sum power for the focused 
Challenge Datacube. The modes are coherently summed 
to show that the error power sum exaggerates false alarm 
problem. The clutter ridge leakage is less noticeable. 

Fig. 11 displays the range-averaged beam-Doppler 
CLEAN mode power for the focused datacube in more 
detail. Some of the bright points away from the clutter 
ridge correspond to targets and some to false alarms. 
Because the clutter is so much stronger than the targets, 
small model errors can produce many false alarms. 

Fig. 12 shows the target-only range-averaged beam-
Doppler CLEAN mode power that may be compared to 
Fig. 11. Again, clutter leakage is exaggerated by the 1000 
range bin average. The high-fidelity simulation used to 
generate the KASSPER Challenge Datacube made this 
plot possible. The ability to decompose the datacube into 
target-only and targetless portions is invaluable when 
developing and testing algorithms. Note that the CLEAN 
analysis process smeared some of the targets. Fig. 2 
demonstrates how the smearing can occur. 
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Fig. 11. Detail of range-averaged beam-Doppler CLEAN 
mode power for the focused datacube. 



Fig. 13 displays the range-averaged estimation error 
beam-Doppler power for the raw KASSPER challenge 
datacube. The mode analysis again stopped at 13 dB 
above the noise floor, leaving a residual clutter ridge 
clearly visible.  

For completeness, Fig. 14 shows the targetless range-
averaged beam-Doppler CLEAN mode power. 

Note that the SCHISM analysis processing time for 
the focused datacube decreased from 778 ms to 259 ms 
per range gate. A more efficient parallel peak finding 
algorithm was primarily responsible for the improved 
efficiency. Elimination of the error lobes reduced the 
previous 321 average modes per range gate to 260. 

 
IMPROVED SCHISM PARAMETER ESTIMATION 

 
The airborne GMTI radar version of the CLEAN 

algorithm nicely concentrates the modes in beam-Doppler 
space, but requires an order of magnitude too many 
modes to prevent lobe leakage. The algorithm can be 
modified to reduce the number of modes. First, find the 
frequency of largest peak of the beam-Doppler data FFT 
and add it to the mode frequency list. Using the listed 
frequencies and their coherent point spread functions, 
solve for the mode amplitudes which most closely fit the 
beam-Doppler FFT of data. Perturb all frequencies and 
again solve for amplitudes. Retain the perturbations that 
reduce the modeling error. Repeat for the next error 
residue peak until power drops below a desired threshold 
(e.g. noise floor + 13 dB). 

Fig. 15 shows the resulting mode parameter fit to the 
range-averaged beam-Doppler power for the focused 
datacube, using the usual 13 dB above the noise floor 
stopping point. The modes are highly concentrated, and 
more impulsive since only an average of 17 modes is used 
per range gate. This brute force approach takes an average 
of 1127 ms to process a single range gate. 

Fig. 16 magnifies the center portion of Fig. 15. Fig. 17 
shows the target-only version for comparison to Fig. 16. 
The model concisely and precisely fits the data, but does 
not accurately locate all scatterers. Because the clutter is 
so much stronger than the targets, small model errors can 
produce many false alarms. Now that fewer modes are 
used to model each range gate, small errors are much 
more damaging than before. For the same reason, clutter 
leakage is less exaggerated by the 1000 range bin average.  
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Fig. 12. Target-only range-averaged beam-Doppler 
CLEAN mode power. 
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Fig. 13. Range-averaged estimation error beam-Doppler 
power for the focused datacube. 
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Fig. 14. Targetless range-averaged CLEAN modes. 
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Fig. 15. Mode parameter fit to the range-averaged beam-
Doppler power for the focused datacube. 



Fig. 18 shows the range-averaged beam-Doppler 
power of the mode parameter fit to the targetless focused 
datacube. This plot clearly shows the location of false 
alarms in beam-Doppler space. Such plots will be 
invaluable for future algorithm development. 

Fig. 19 shows the range-averaged beam-Doppler 
estimation error power for the mode parameter fit to the 
focused datacube. The peak error was 8 dB even though 
the algorithm quit at 13 dB above the noise floor. This 
implies that the mode modeling can be easily extended 
closer to the noise floor. Also note the valley along the 
clutter ridge. This indicates a slight broadening of clutter 
modes.  

If the space-time data are not tapered for low FFT 
sidelobes, peak amplitude estimates are corrupted and the 
CLEAN algorithm performs poorly. Fig. 20 displays the 
resulting mode parameter fit to the focused datacube 
when the data is not tapered. The parameter fit accuracy is 
actually helped by the added FFT resolution, but the 
analysis process is slowed to 1606 ms for the average 19 
modes per range gate. 

Beam-Doppler clutter frequency estimation is tricky 
because the modes are not orthogonal. One bad mode can 
corrupt the entire solution, producing many false alarms. 
The error modes displayed in Fig. 3 can easily be 
mistaken for mode pairs and vice versa. 
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 Fig. 16 Detail of mode parameter fit to the range-
averaged beam-Doppler power for the focused datacube 
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Fig. 17. Target-only parameter fit to the focused 
datacube beam-Doppler response. 
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Fig. 18. Targetless mode parameter fit. 
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Fig. 19. Mode parameter fit estimation error range-
averaged beam-Doppler power for the focused datacube. 
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Fig. 20. Mode parameter fit to the focused datacube 
without the use of a data taper. 



 
QUESTIONS RAISED 

 
The mode parameter fit of (1) to airborne GMTI radar 

space-time data appears to offer many benefits. Because 
of the nonlinear nature of beam-Doppler frequency 
estimation, there are many possible candidate analysis 
algorithms but not much theory to guide the choice. At 
this early stage, mode parameter fitting algorithms show 
promise, but tend to generate many false alarms. On-
going efforts strive to build mode fit algorithms that 
minimize the number of beam-Doppler modes while 
reducing clutter mode leakage. The availability of target-
only and targetless datacubes is invaluable for algorithm 
development and testing. 

Many issues need to be addressed. Is the clutter 
leakage caused by uncorrected measurement biases or 
some fundamental limitation of mode analysis? Do 
analysis procedures yielding fewer modes actually 
produce “better” results? Are target modes damaged by 
analysis procedures? Should the analysis be stopped at a 
higher threshold and used as a preprocessor for standard 
STAP? How can the analysis algorithm be altered to 
reduce false alarms? Is recursive high-order cal-on-clutter 
over successive range bins feasible? Can several CPIs be 
coherently merged using clutter for alignment? Will 
SCHISM work on a genuine datacube? Current mode 
analysis algorithms utilize parallel peak finding to reduce 
the processing time to under 200 ms per range gate. Is 
there an even more efficient (hopefully systolic) 
algorithmic architecture for SCHISM? 
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